Reference:
http://blog.csdn.net/v_july_v/article/details/18312089
http://leetcode.com/2011/07/lowest-common-ancestor-of-a-binary-tree-part-ii.html
(1) Is the tree a BST or not?
BST的话,我们就能按照BST的定义思考了。当前遍历的node如果比我们要找的两个点都大,说明那两个点都在当前node的左边,所以这两个node的祖先肯定在当前node的左边,所以往左边找。反之,往右边找。如果这两个点一个大于当前node一个小于当前node,说明当前node就是LCA。 如果这两个点一个是另一个的祖先,那么这个点就是LCA。
代码如下:
1 public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { 2 if(p.val < root.val && q.val < root.val) 3 return lowestCommonAncestor(root.left, p, q); 4 else if(p.val > root.val && q.val > root.val) 5 return lowestCommonAncestor(root.right, p, q); 6 else 7 return root;
8 }
(2)那如果不是BST呢?一般Binary Tree.
a. Tree结构中没有parent域。
递归找。
代码如下:
1 // Worst case O(n) 2 Node getLCA(Node root, Node node1, Node node2){ 3 if(root == null) 4 return null 5 if(root == node1 || root == node2) 6 return root; 7 8 Node left = getLCA(root.left, node1, node2); 9 Node right = getLCA(root.right, node1, node2); 10 11 if(left != null && right != null) 12 return root; 13 else if(left != null) 14 return left; 15 else if(right != null) 16 return right; 17 else 18 return null; 19 }
b. 如果有parent域。
转化为两个linkedlist的交点问题。
代码如下:
1 int getHeight(Node p){ 2 int height = 0; 3 while(p!= null){ 4 height++; 5 p = p.parent; 6 } 7 return height; 8 } 9 10 void swap( int a, int b){ 11 a = a + b; 12 b = a - b; 13 a = a - b; 14 } 15 16 Node getLCA(Node p, Node q){ 17 int h1 = getHeight(p); 18 int h2 = getHeight(q); 19 20 // q is always deeper than p 21 if(h1 > h2){ 22 swap(h1, h2); 23 swap(p, q); 24 } 25 26 int diff = h2 - h1; 27 28 for( int i = 0; i < diff; i++) 29 q = q.parent; 30 31 while(p!= null && q!= null){ 32 // common node 33 if(p == q) 34 return p; 35 p = p.parent; 36 q = q.parent; 37 } 38 39 return NULL; // p and q are not in the same tree 40 }